Skulematters

A FIRST LOOK
The Centre for Engineering Innovation & Entrepreneurship

A HUB FOR COLLABORATIVE RESEARCH
Multidisciplinary teams address pressing issues in health care and energy. Pages 4 & 6

AN ENTREPRENEURIAL SPIRIT
Enterprising students turn great ideas into viable products and services. Page 8

A COMPREHENSIVE EDUCATION
Leadership training prepares engineers for successful, high-impact careers. Page 10
Contents

FEATURES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>SHEDDING LIGHT ON OUR ENERGY DILEMMA</td>
</tr>
<tr>
<td>6</td>
<td>NAVIGATING COMPLEX GLOBAL HEALTH CHALLENGES</td>
</tr>
<tr>
<td>8</td>
<td>HATCHING BRIGHT IDEAS</td>
</tr>
<tr>
<td>10</td>
<td>BUILDING SKILLED ENGINEERS AND STRONG LEADERS</td>
</tr>
<tr>
<td>12</td>
<td>ALUMNI NEWS</td>
</tr>
<tr>
<td>18</td>
<td>HONOUR ROLL</td>
</tr>
</tbody>
</table>

Alumni News

- Insights, updates, awards and honours

Honours Roll

- Special thanks to our supporters and volunteer leaders

News from Your Field

- Department of Chemical Engineering & Applied Chemistry
- Department of Civil Engineering
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering
- Division of Engineering Science
- Institute of Biomaterials & Biomedical Engineering
- Department of Mechanical & Industrial Engineering
- Department of Materials Science & Engineering
- University of Toronto Institute for Aerospace Studies

Meet Skule’s Next Innovators

- The Institute for Leadership Education in Engineering (ILEad) conducts pioneering research into the unique leadership needs of the profession.

A Message from Dean Cristina Amon

The image on the cover of this issue of Skulematters represents a new era for U of T Engineering. The Centre for Engineering Innovation & Entrepreneurship builds upon our strengths. It enables us to further collaborate across fields to address critical global problems, take an entrepreneurial approach in our activities, and create innovative learning environments that inspire a new generation of engineers to achieve impact in the world.

The features in this magazine illustrate how these values are exemplified in the innovative research initiatives and educational programs that will be housed within our new building. The Centre brings together the talents of our entire Faculty and the broader University, and provides the space, facilities and collaborative environment needed to encourage students, researchers, alumni and industry partners to work together to get great ideas off the ground.

This ambitious project is quickly becoming a reality for our Faculty thanks to the generous support of our alumni and friends. To date, hundreds of alumni have contributed in a number of ways, from making generous gifts in support of the project to volunteering time and expertise as mentors in our entrepreneurship programs. I am delighted with the initiative demonstrated by our growing alumni community in Asia-Pacific, raising funds to sponsor classrooms and design spaces. And the Engineering Society’s $1-million commitment shows that our undergraduate students recognize the importance of this new student space.

I am proud to share that Skule rose to become the twelfth-best engineering school in the world, according to this year’s Academic Ranking of World Universities. Transformational initiatives like the Centre for Engineering Innovation & Entrepreneurship will ensure that U of T engineers leverage the Faculty’s collaborative culture to create world-class educational experiences. Thank you for your contributions and commitment toward our pursuit of excellence.

Cristina Amon
Dean
Innovation Lives Here
Inside the Centre for Engineering Innovation & Entrepreneurship (CEIE)

The CEIE is scheduled to open its doors in late 2016 or early 2017, welcoming students, researchers, alumni and industry partners to a new collaborative environment for U of T Engineering.

The CEIE plans incorporate a ‘smart building’ concept, which integrates heating, cooling, electrical and communications systems into a single network, providing greater energy efficiency.

The Centre for Global Engineering will continue its groundbreaking cross-disciplinary work in the CEIE. See page 6.

The Centre will bring together over 50 researchers involved in the Institute for Sustainable Energy. See page 4.

The new building will give The Entrepreneurship Hatchery much-needed room to grow. See page 8.

Alumni groups in Hong Kong, Indonesia, Singapore, South Korea and Taiwan have rallied behind the Centre by sponsoring classrooms and design spaces.

The 500-seat Lee & Margaret Lau Auditorium will be the only lecture hall of its kind in North America, featuring small-group seating and highly interactive learning and communications technology.

Thanks to a $1-million commitment from the Engineering Society, the ARENA will provide student clubs with unique space to socialize, hold events and collaborate on group projects.

Visiting campus? The CEIE will feature dedicated space for alumni to work, meet with students and collaborate with faculty members.

Light fabrication facilities including mechanical and electrical shops and 3-D printers will enable students to create prototypes of new products.

Alumni groups in Hong Kong, Indonesia, Singapore, South Korea and Taiwan have rallied behind the Centre by sponsoring classrooms and design spaces.

Illustration based on anticipated designs for the Centre for Engineering Innovation & Entrepreneurship provided by Montgomery Sisam Architects + Feilden Clegg Bradley Studios.
Shedding Light on Our Energy Dilemma

Professor David Sinton's (MechE 9T8, PhD 0T3) fluid mechanics research may be small-scale, but as director of U of T Engineering's Institute for Sustainable Energy, he's addressing some of the largest challenges facing global society.

"Energy issues are often complicated, involving infrastructure, electrical engineering, mechanical engineering, materials engineering and civil engineering," Professor Sinton says. "To tackle larger problems and have larger impact, you need teams."

The Institute promotes collaboration among researchers and students from across the University, as well as with industry and government.

Professor Sinton's lab explores the small-scale fluid mechanics and optics aspects of using fibre optics to grow algae that produce oils for biofuels. These specialized, "fat" algae offer more fuel density than other crops. They could provide a sustainable alternative to fossil fuels, and a more efficient alternative to other biomass sources.

Professor Sinton's research is ambitious on its own, but through the Institute, it contributes to something bigger. Transitioning any technology from the lab into the global energy mix requires input from many types of experts. The Institute provides the infrastructure for such multidisciplinary exchanges. Its members' expertise spans all engineering disciplines.

Among them are Professor Deepa Kundur (ElecE 9T3, ECE MASc 9T5, PhD 9T9), who studies the security and efficiency of smart power grids, and Professor Heather MacLean (CivE), who studies the life cycle impacts of energy production, storage, distribution and consumption. Along with about 50 other faculty members, these researchers give the Institute the capacity to address the very largest sustainability questions, and the flexibility to solve new problems as they emerge.

Nothing highlights the vision of the Institute more than its future home — the Centre for Engineering Innovation & Entrepreneurship. This new facility is expressly designed to foster the kind of broad collaboration Professor Sinton values.

"The Institute embodies the spirit of the building, and vice versa," he says. "I'm excited about the idea of cutting across departments and bringing energy researchers together."

Learn more at energy.utoronto.ca.
Most of us take for granted that when there’s a medical emergency, we can dial a central phone number and have an ambulance at our door within minutes. That’s not the case in many cities in the developing world. In Dhaka, Bangladesh’s capital with a metropolitan population of 15 million, you must phone a hospital directly and then wait for an ambulance to inch its way through streets clogged with cars, buses, pushcarts and bicycles, not to mention frequent political demonstrations and riots. It can take an hour for an ambulance to travel a single kilometre.

Since time-sensitive illnesses such as heart attack, acute trauma, blood loss and childbirth complications account for more than a third of deaths in low- and middle-income countries, reducing ambulance response times could make a huge difference.

That’s the objective of AERO, which stands for Ambulance Emergency Response Optimization. A multidisciplinary project of the Centre for Global Engineering (CGEN), the AERO team includes five researchers representing emergency medicine, transportation engineering, microfinance and optimization, with bases in Toronto and Dhaka.

“The thing I find exciting about AERO is that it brings together people with very diverse but complementary expertise to solve a challenging problem,” says lead researcher Professor Timothy Chan (MIE).

Partnering with Dhaka’s biggest ambulance company, AERO combines GPS-based transportation engineering with optimization methods to accomplish three objectives: determining the best locations to park ambulances, since basing them at hospitals can result in lengthy round trips; creating the first mixed-mode traffic simulator to estimate travel times; and developing a route optimization method that takes into account the locations of the ambulance, patient and hospital, and can compensate for route disruptions.

Professor Chan, whose expertise involves developing mathematical models to analyze and optimize healthcare systems, worked previously with team member Dr. Laurie Morrison, an emergency medicine specialist at Toronto’s St. Michael’s Hospital, on improving defibrillator locations to reduce cardiac deaths. Other contributors to the AERO research are Saifu Li (IndE 1T2 + PEY) and Justin Boutilier (IndE MASc 1T5).

AERO team member Moinul Hossain, a transportation engineer in Dhaka, has had plenty of firsthand experience with long waits for ambulances and medical treatment: his mother has kidney disease and his father is a cancer patient. He says in addition to reducing ambulance response times, AERO will obtain real-time information about which hospitals have the lowest emergency room wait times.

Hossain is confident the AERO system could be rolled out elsewhere. “Although we are using Dhaka as our study area, it represents any megacity in any developing country,” he says.

CGEN Director and AERO team member Professor Yu-Ling Cheng (ChemE), who has been to Dhaka and brought Professor Chan and Hossain together, says, “This project is beautiful, for three reasons. As engineers, and engineering professors in particular, we want to work on important problems, we want projects that make use of our knowledge, and we want to model for our students how to do this kind of impactful work.”

Learn more at cgen.utoronto.ca.

BREWING A LIFE-SAVING TEA

According to the World Health Organization, iron deficiency causes nearly 600,000 perinatal deaths and more than 100,000 maternal deaths each year. Professor Emeritus Levente Diosady (ChemE 6T6, MASc 6T8, PhD 7T2) believes these numbers can be reduced by creating an ‘iron brew,’ or in other words, developing iron-fortified tea leaves for consumption. His idea has been backed by a Grand Challenges Canada grant and has also garnered support from the U.K. government. He hopes to have the tea fully developed within the next five years.
Hatching Bright Ideas

Digital cameras, tablets and smartphones provide more options for creative photography than ever before, except when it comes to lighting. The built-in flashes give only single, fixed bursts of light, so hobbyist photographers who want something more — non-standard colours, creative lighting, dynamic effects for video — must purchase heavy, bulky professional flashes and strobes that can cost thousands of dollars.

That may soon change, thanks to two second-year students, Anastasiya Martyts (EngSci 1T6) and Tiange Li (Neuroscience 2016) have developed an affordable lighting system that can fit in your pocket. Modly — short for Modular Lighting — is a battery-powered panel of red, blue and green light-emitting diodes (LEDs) controlled by a mobile application and packaged in a slim plastic case that’s just slightly bigger than the average smartphone.

Individual Modly units are also stackable, so creative shutterbugs who desire more than a basic setup can create lighting panels of any size or shape to suit their artistic needs and budget. “Modly is mainly for amateur photographers who want to experiment with this art, but it could be for niche professionals, too,” says Li. He says Modly could be for niche professionals, too, “Modly is mainly for amateur photographers who want to experiment with this art, but it could be for niche professionals, too,” says Li. He says Modly could be on the market as early as next year, retailing for about $60 per unit.

U of T Engineering’s Entrepreneurship Hatchery was the catalyst that helped Li and Martyts bring Modly to life. They first met in April 2013, when Li had the idea for a modular lighting system but lacked the technical know-how to pursue it. He asked one of his research supervisors to recommend a partner, and Martyts was up for the challenge. “Neither of us knew what we were doing,” she admits, but once their project was accepted into the Hatchery’s summer program, they went for it. It was a steep learning curve as they spent the summer studying electronics and hardware programming, researching the market and meeting weekly with mentors Amit Bhole, an intellectual property lawyer, and Amy Chong (IndE 9T2), an MBA candidate at U of T’s Rotman School of Management.

In September, the Modly team presented its product at the Hatchery’s Demo Day and beat out eight other teams to win the inaugural $20,000 Lacavera Prize. Telecommunications executive Anthony Lacavera (CompE 9T7) established the prize to encourage entrepreneurship among U of T students.

Bhole says the students made a thoroughly researched, well-prepared pitch at the competition. “The images the team shared really blew the audience away. Tiange and Anastasiya learned to work together and recognized each other’s strengths early on, which was likely vital to their big win.”

The team’s market research found broad appeal for Modly. One executive from the national photography retail chain Henry’s said, “After meeting with Tiange and Anastasiya, I feel confident in confirming our interest in their LED product. This is the sort of product we seek out in the market to offer our customers new and exciting approaches to their photography.”

Now in its second year, the Hatchery boasts a team of experienced volunteer mentors and 48 student entrepreneurs. It will continue to grow in its new home within the Centre for Engineering Innovation & Entrepreneurship, which will include collaborative design space and prototyping facilities. Hatchery executive director Joseph Orozco says, “The Hatchery gives young talent the support and skills to lead them not only to a degree, but to a job they’ve created themselves.”

Learn more at hatchery.engineering.utoronto.ca.

The Hatchery is a partnership between U of T Engineering & Entrepreneurship, the Centre for Engineering Innovation & Entrepreneurship, and the University of Toronto’s Student Life and Career Centre. The Hatchery is funded by the Hatchery’s executive director, Anthony Lacavera (CompE 9T7), presented the first-ever Lacavera Prize to the Modly team at the Hatchery’s Demo Day.

Tianne Li (Neuroscience 2016) and Anastasiya Martyts, (EngSci 1T6) stand among the effects of Modly, the lighting system they developed at The Entrepreneurship Hatchery. This particular effect is created by tracing the lights along a path during a long camera exposure.
INSTITUTE FOR LEADERSHIP EDUCATION IN ENGINEERING

Building Skilled Engineers and Strong Leaders

As technology becomes ever more pervasive and sophisticated, engineers are being called to leadership positions like never before.

Modern engineers must know not only how things work, but also how people work. They require self-awareness, conflict resolution abilities, active listening skills and other leadership qualities — qualities not traditionally emphasized in an engineering curriculum.

A groundbreaking initiative at U of T Engineering has changed that tradition. With direction from Chemical Engineering Professor Doug Reeve (ChemE MASc 6T9, PhD 7T1), the Institute for Leadership Education in Engineering (ILead) is helping to produce great engineers who are also great leaders.

Throughout his career as an entrepreneur, educator and mentor, Professor Reeve has championed the idea that leadership skills are fundamental to the success of an engineer. “Whether you are CEO, or are at the bottom rung of a company, you have a responsibility to conduct yourself as a leader,” he says. “Leadership development for engineers is critical to entrepreneurship and to innovation.”

The seeds of ILead were sown more than a decade ago, when Professor Reeve established a summer program that taught ‘success skills’ to about 30 students. Over the years, this initiative expanded organically into a year-round, Faculty-wide collection of courses and educational activities. In 2010, it was formalized as an institute that provides training to hundreds of students each year.

Professor Reeve is now looking forward to finding a physical home for ILead within the new Centre for Engineering Innovation & Entrepreneurship. There, ILead will continue the Engineering Leadership Project (ELP), an interdisciplinary research initiative that aims to better understand key leadership qualities within the engineering profession.

Professor Reeve’s ELP collaborators include ILead researchers Drs. Robin Sacks and Cindy Rottmann, neither of whom come from an engineering background. “Robin and Cindy are social scientists,” Professor Reeve says. “They have scholarly backgrounds in leadership. They bring wonderful capabilities in creating a theoretical framework for the research.”

The team used rigorous social science methodology to collect data through focus groups and interviews, analyze hundreds of pages of transcripts, theorize engineering leadership and present findings to professional and academic audiences. Most recently, they have used findings from the first phase of their study to generate a theoretically informed survey.

Professor Reeve is particularly enthusiastic about the survey, which will be released to companies in 2014. The researchers hope it will provide a new, deeper understanding of the roles engineers play in the workplace. Four industry partners have jumped on board to date, providing both financial and organizational support: Google Canada, Vale, Hatch Ltd. and ERCO Worldwide.

“It will provide extremely valuable information about engineering leadership,” says Professor Reeve. “We think it will aid companies in recruitment, professional development and retention.”

It will also help ILead instructors create an evidence-based curriculum to ensure they are providing what engineering students truly need to succeed as leaders. Professor Reeve acknowledges that such skills don’t always come naturally to engineering students, but he says that makes the lessons all the more rewarding. “It’s really wonderful to watch the lights go on,” he says, “and to see how much students are gratified to find out how they can make meaning in their work.”

Learn more at ilead.engineering.utoronto.ca.

PICTURED ILead researchers Drs. Cindy Rottmann and Robin Sacks bring expertise in educational leadership, psychology and human development to the Engineering Leadership Program, led by Professor Doug Reeve (ChemE). Their work is helping U of T Engineering define the leadership training required to prepare the next generation of engineers for successful, high-impact careers.

Meet Skule’s Next Innovators
Events

Spring Reunion

June 1, 2013
Honoured years: 3T8, 4T3, 5T3, 6T8, 7T3, 7T8, 8T3, 8T8, 9T3, 9T8, 0T3 and 0T8.

1. Yoan Kagoma (MechE 0T8) and Varuna Prakash (MSE 0T8, BME MHSc 1T0).
2. The Lady Godiva Memorial Band [sic] makes an appearance.
3. Father and son William Chackeris (ElecE 5T3) and Peter Chackeris (CivE 8T3).
4. Current members of the Skule Cannon Guard with past members Donald Studney (ElecE 6T3) and Zissis Haritos (ElecE 6T3).

BizSkule

June 11, 2013
Big League Sports, Entertainment & Media

1. Yoan Kagoma (MechE 0T8) and Varuna Prakash (MSE 0T8, BME MHSc 1T0).
2. The Lady Godiva Memorial Band [sic] makes an appearance.
3. Father and son William Chackeris (ElecE 5T3) and Peter Chackeris (CivE 8T3).
4. Current members of the Skule Cannon Guard with past members Donald Studney (ElecE 6T3) and Zissis Haritos (ElecE 6T3).
5. Moderator Paul Godfrey (ChemE 6T2), President and CEO, Postmedia Network; Former President and CEO, Toronto Blue Jays.
6. Panelists Marc Boyman (IndE 7T1) President, Boyman Productions Inc., Progress Developments Ltd. & Reveille Inc.; Nick Di Donato (IndE 8T1) President and CEO, Liberty Entertainment Group; and Steve Mirkopoulos (EngSci 7T4) President and co-founder, Cinespace Film Studio.
7. Frank Protomanni (CivE 8T2) and Philip Protomanni.
8. Julie Hommik (MechE 1T0 + PEY) and Chris Siemieniuch (MechE 1T0 + PEY)
9. Sam Sebastian (CompE 9T7), Antonio Cancellieri (CivE 0T4), Kevin Hanna and Sophia Hanna (ElecE 9T7).

CATCH UP WITH YOUR CLASSMATES

We’re reinstating the ‘class notes’ section in the next issue of Skulematters. Please keep us updated on developments in your life — career news, marriages, births and more.

Send news and photos to skulealumninews@ecf.utoronto.ca throughout the year.
Entries are already rolling in. View them online at alumni.engineering.utoronto.ca/classnotes.

Visit alumni.engineering.utoronto.ca to learn about upcoming alumni events and opportunities.
SELECTED ALUMNI AWARDS

Congratulations to the following Skule alumni for their accomplishments in 2012–2013.

American Helicopter Association

Igor I. Sikorsky Human-Powered Helicopter Prize

Todd Reichert (EngSci 0T5, AeroE PhD 1T1) and
Cameron Robertson (EngSci 0T8, AeroE MAsc 0T9)

Canadian Academy of Engineering

Fellow

Bill Buckley (MechE 7T1)
Tongwen Chen (ElecE MAsc 8T9, PhD 9T1)
Thomas Darrie (AeroE MAsc 7T9, PhD 8T3)
Savvas Hatsikiriakos (ChemE MAsc 8T8)
Vuong Van Hau (MechE MAsc 7T3, PhD 7T6)
Chris Twigg-Moleary (MechE MAsc 6T9, PhD 7T2)
James Wilcox (MechE 7T9)

City of Toronto

International Student Excellence Award: Entrepreneurship

Hargun Suri (CompE 1T3)

Engineers Canada

Award of Journalism Excellence

Tyler Irving (ChemE MAE 1T0)

Ernst & Young

Entrepreneur of the Year Ontario — Emerging Entrepreneur

Somen Mondal (CompE 0T2)

Government of Canada

Order of Canada

Anne Sado (IndE 7T7, Honourary Doctorate 1T1)

Professional Engineers of Ontario and Ontario Society of Professional Engineers

Young Engineer Medal

Terence Michael Brandon (CompE 0T3)

Entrepreneurship Medal

Carlos de Oliveira (Civil MAsc 0T6)

TIME Magazine

100 Most Influential People in the World

Donald R. Sadoway (EngSci 7T2, MSE MAsc 7T3, MSE PhD 7T7, Honourary Doctorate 1T3)

SELECTED FACULTY AWARDS

American Association for the Advancement of Science

Fellow

Alberto Leon-Garcia (ECE)
Andreas Mandelis (MIE)
Doug Perovic (MSE)

Canadian Aeronautics and Space Institute

McCurdy Award

David Zingg (UTIAS)

Canadian Association of Physicians National Optics Institute

Medal for Outstanding Achievement in Applied Photonics

Andreas Mandelis (MIE)

Canadian Academy of Health Sciences

Fellow

Molly Shoichet (ChemE, IBBME)

Canadian Science and Engineering Hall of Fame

Ursula Franklin (MSE)

Canadian Society for Mechanical Engineering

Robert W. Angus Medal

Javad Mostaghimi (MIE)

Engineering Institute of Canada

K.Y. Lo Medal

Chal Park (MIE)

Engineers Canada

Young Engineer Achievement Medal

Goldie Nejat (MIE)

Humboldt Foundation

Alexander von Humboldt Research Award

Andreas Mandelis (MIE)

Institute of Physics (U.K.)

Fellow

Harry Ruda (MSE)

International Academy of Food Science and Technology Fellow

Levente Diosady (ChemE)

International Congress on Durability of Concrete

V.M. Malhotra Award

Doug Hooton (Civil)

MIT Technology Review

Top 35 Innovators Under 35

Joyce Poon (ECE)

Natural Sciences and Engineering Research Council

Steacie Prize

Edward (Ted) H. Sargent

Steacie Fellow

Yu Sun (MIE)

Synergy Award for Innovation

J. Paul Santerre (IBBME)

New Jersey Center for Biomaterials

Biomaterials Achievement Award

Michael Sefton (ChemE, IBBME)

Royal Society of Canada Fellow

Elizabeth Edwards (ChemE)

Frank Kschischang (ECE)

Jonathan Rose (ECE)

Society of Industrial Microbiology and Biotechnology

Young Investigator Award

Radhakrishnan Mahadevan (ChemE)

Sir John Kennedy Medal

Andrew Goldenberg (MIE)

Women of Influence Magazine

Canada’s 25 Most Influential Women

Cristina Amon (MIE)

SELECTED GRADUATE STUDENT AWARDS

AUTO21 Poster Competition

First Place

Aaron Gnan (MIE) and

Rena Rizvi (MIE)

Baneting Postdoctoral Fellowships

Jin Young Kim (ECE)

Benoit Lessard (ChemE)

Claudette MacKay-Lassonde Scholarship

Beverly Bradley (ChemE)

IEEE Photovoltaic Specialists Conference

Best Poster Award

Kitty Kumar (MSE)

Vanier Canada Graduate Scholarships

Mathew Carias (IBBME)

Rhea Liem (UTIAS)

Matthew Ooms (MIE)

Nika Shakihi (IBBME)

Kim Tsui (IBBME)

SELECTED UNDERGRADUATE AWARDS

Electro-Federation Canada Scholarship

Muhammad Kazim Ali (CompE 1T3)

Alison Ma (ElecE 1T5)

Trinity College Dublin

Undergraduate Award in Engineering & Mechanical Sciences

Somie Khan (ChemE 1T1 + PEY)

Wharton Undergraduate Consulting Competition

Second Place

Tarek El Fedawy (IndE 1T3 + PEY),

Huda Idrees (IndE 1T2 + PEY),

Kazem Koutob (IndE 1T3) and

Layan Koutob (IndE 1T2 + PEY)
2013 Engineering Alumni Association Awards

Engineering Alumni Hall of Distinction Award
The Engineering Alumni Association (EAA) is proud to present this assembly of extraordinary alumni selected by their peers for their lifelong accomplishments. Commemorated in a display in the Sanford Fleming Building, Hall of Distinction members are a familiar daily presence in the lives of students and serve as examples to future generations of U of T engineers.

Dr. Cadario’s 37-year career with the World Bank had a profound impact on international development. This Rhodes Scholar currently holds many leadership roles across U of T, including serving on the Dean’s Advisory Board and the Faculty’s Boundless Campaign Executive. This is Dr. Cadario’s fourth award of distinction from the EAA.

Malcolm F. McGrath Alumni Achievement Award
Recognizes contributions to the Faculty, University or to the community, in honour of Malcolm McGrath, past Assistant Dean, Alumni Relations.

Paul Cadario
(CivE 7T3, Honorary Doctorate 1T3)
A familiar daily presence in the lives of students, Cadario has been a thoughtfully dedicated and effective champion for his alma mater. Among her many achievements, she founded WISE and has also served on boards and held leadership roles with many organizations including PEO. She currently serves as General Manager at Vale.

Engineering Alumni Medal
As the Engineering Alumni Association’s highest honour, this award recognizes outstanding achievement, superior accomplishments and flair and excellence in response to challenges.

Anne Dunets Wills
(CivE 7T6)
Dunets Wills applies her civil engineering skills to areas of great need across the globe. As a senior manager with planningAlliance and as a volunteer, she has worked on projects throughout Canada and in several African countries. She has also lent her expertise to engineering students at the Faculty’s Gull Lake Survey Camp.

An outstanding achievement, superior accomplishments and flair and outstanding achievement, superior accomplishments.

Anthony Lacavera
(CompE 9T7)
Lacavera and several fellow alumni saw the potential of the newly deregulated telecommunications industry and created Globalive Communications in 1998. Its services quickly expanded to include the wireless service now known as Wind Mobile. He continues to invest in technology and telecom ventures and also established a foundation that helps charities optimize their fundraising efforts.

Lee Lau
(ElecE 7T7)
As a co-founder of ATI Technologies Inc., Lau was instrumental in bringing the company to new levels of success in the area of special-purpose microelectronic chips. Since selling the company, Lau has become a strong proponent of entrepreneurship, as both an investor and a supporter of initiatives like The Entrepreneurship Hatchery at U of T Engineering.

Donald R. Sadowsy
(EngSci 7T2, MSE MasSc 7T3, MSE PhD 7T7, Honorary Doctorate 1T3)
Named one of the 100 Most Influential People in the World in 2012 by TIME Magazine, Professor Sadowsy is a leading researcher in the area of materials engineering for energy-storage technologies. His illustrious career includes 35 years as a brilliant educator at MIT and an innovative researcher.

David Wilkinson
(EngSci 7T2)
Dr. Wilkinson has made prolific research contributions in materials engineering, particularly ceramics and metallurgy, while building an impressive career in academic leadership at McMaster University. As Dean of Engineering since 2008 and current Provost and Vice-President (Academic), he has positively influenced many young engineers through his teaching, work and example.

Engineering Alumni Hall of Distinction Award
The Engineering Alumni Association (EAA) is proud to present this assembly of extraordinary alumni selected by their peers for their lifelong accomplishments. Commemorated in a display in the Sanford Fleming Building, Hall of Distinction members are a familiar daily presence in the lives of students and serve as examples to future generations of U of T engineers.
Honour Roll
2012–2013

The growing successes of Skule are due in no small part to the generosity of our alumni and friends around the world. We offer deep thanks to all those who contribute.

FACULTY BENEFICIARIES

The following donors have made new gifts and pledges to the Faculty of $25,000 or more between May 1, 2012 and April 30, 2013:

Peter and Jacelynn Allen
John Donald Barber
William R.C. Blundell
Dan Cornachia
Walter Curtuck
Melanie Duhamel
Patrick Yuk-Bun Fung
Stan Gusner
Hatch Ltd.
Texas Instruments Inc.
Timbers Consulting Inc.
William and Kathleen Troost
Lorie Waisberg
Paul B. Walters
W. Murray Woronam
Tom and Ruth Woods
Zak Company for Engineering & Trading

LEGACY GIFTS

Planned gifts fund the work of our students, scholars and researchers through will bequests, insurance gifts, trust agreements and charitable annuities.

King’s College Heritage Society

The King’s College Circle Heritage Society recognizes and honours alumni and friends who have thoughtfully made a provision for the University. As of April 30, 2013, the following individuals have remembered the Faculty of Applied Science & Engineering in their estate plans.

Adeniyi Akanni
T. Christie Arnold
O. Balcer
Howard A. Bennett
Peter Beynon
William A. Campbell
Kenneth and Aliney Christie
H. Stewart Dand
William J. Dowkes
Colin Patrick Doyle
Gerald and Marlene Dubois
Mélanie Duval
Marta Ecsedi
Ammanuel and Sherrif Tamayo
Mélanie Faddis
John Fox
Donald H. Francis
Richard F. Gabbeby
Robert Heard
Diana L. Heard
Arthur C. Hewitt
Lauri and Jean Hvala
K. Betsy Hill
Nick A. Izzo
Ronald H. Jackson
James D. Kemp
Margaret Haviland Kennedy
Arthur P. Kennedy
Bala P. and Karnika B. Krishnan
Pierre Lassonde
Maryam Latippor and Vedad Karapatos
Kenneth G. Lopez
Jacquyyn R. MacCon
Peter Maik
Paul Manners
Ivan McCausland
Bruce M. Milar
Robert Michael Panko
Alister John Parker
Rhea Plosker and Michael Carter
Ewing A. Rae
Russell A. Reynolds
Paul Richards
Robert and Susan Roden
David and MarionRosebaugh Trust
Leo and Alida Schenker
George and Christina Sierk
G.M. Sernas
P.J. (Rocky) Simmons
and Louis Piggott
Marvin A. Smith
Michael V. Spence
John F. Trant
Jack Trist
Stephen Trivett
Glynn T. Williams
James Wright

ANNUAL FUND

Annual fund gifts from alumni, parents and friends are at the heart of philanthropy at U of T Engineering. These gifts — whether unrestricted or designated to a department, program or initiative — provide the Faculty with a base of support upon which it builds.

Skule Society Donors

The Faculty of Applied Science & Engineering is grateful to the following members of the Skule Society for their generous and ongoing support. Their annual gifts of $1,000 to $24,999 (or of $250 and above for current students and young alumni of the last decade) provide an enhanced student experience, contribute to Faculty excellence and improve our labs and classrooms.

AACE Canada Inc., Toronto Section Betty Campbell
Aeroclub of Canada Trust Fund
AMD Canada
Apache Canada Ltd.
Anchor Shoring & Caissons Ltd.
Aloha Foundation
Alva Canada Ltd.
American Alice Ara
Rabin Augustine
John Bax
BMO Financial Group
Jack and Barbara Baron
Boiler Inspection & Insurance
Bradley C. Bourne
Company of Canada
Gordon W.R. Bowby
Bombardier
Justin C. Bowler
The Bowman Family
Alain R. Boyce
John D. Boyd
Margaret R. Brait
James D.B. Bromley
Michael and Rena Buckstein
Tom Bunker
Frank Bury
Canada’s Institute of Steel Construction
Rhea Plosker and Michael Carter
Tony Cesta
Yi Chai
Anu Chanan
Michael E. and Barbara C. Charles
Chemical Engineering Research Consultants Ltd.
Michael Circelli
Engineering Class of OT3
Morris A. Cohen
John Colantonio and Family
ConcordiaPhilips Canada
Dan Cornachia
E.B. (Ted) Cross
Peter W. Cullen
C. William Daniel
Donald E. Davery
Glen R. Davidson
Anton E. Davies
Davis + Henderson Corporation
James Dawson
Thomas Dearie
David Delves
W.J. Deyell
Levente Diosady
Ian R. Dutton
Henry N. Edamura
Mark and Claudia Eichhorn
Ernst & Young Matching Gifts
Program for Higher Education
Greg Evans
John Ezyk
Myrjan N. Faust

“It’s exciting that many of our newest initiatives, including the Centre for Global Engineering, will be located together, so that faculty and students can learn from what’s going on down the hall or across the atrium. Great universities are where new ideas rub shoulders.”

Paul Cadario (Civ.E. 7T3, Honorary Doctorate 1T3)
University of Toronto Distinguished Senior Fellow in Global Innovation
Former Senior Manager, World Bank

Dean Cristina Amon presented Dr. Cadario with an honourary doctorate at Spring Convocation. He also received the Engineering Alumni Medal from the Engineering Alumni Association this year. See his bio on page 16.
Meet the leaders of our Asia-Pacific fundraising efforts in support of the Centre for Engineering Innovation & Entrepreneurship.

Hong Kong
John Lo
(ChemE 9T1 + PEY)

South Korea
JungKyun Alex You
(MechE 0T1)

Singapore
CK Chang
(MechE 6T8)

Taiwan
James C. Tai
(ChemE 6T8)

Not Pictured:
Indonesia
Aris Utama
(IndE 0T2)

Indonesia Campaign Committee
Aris Utama, Chair (IndE 0T2)
William Ali (ElecE 0T4)
Samuel Handoko (IndE 0T5)
Michael Mulayanto (MechE 0T4)
Arno Toi (IndE 0T5)

Singapore-Malaysia Campaign Committee
CK Chung, Chair (MechE ME/ApplEng 67B)
Yong Guan Koo (MechE 7T0, MAeC 7T2, Honorary Doctorate (H.D.)
Keong Wah Er (ElecE 7T0)
Ming Seong Lim (MechE 7T0)
Michael Gautama (ChemE 6T8, MAeC 8T6, Ph.D. 9T3)
Robert Chen (MechE 7T4)
Evelyn Wong

San Francisco Bay Area Alumni Chapter
Yuri Sagolov (EngSci 0T9)
Angela Tran (EngSci 0T5, ChemE MAeC 0T7)
Sam Vatsa (ElecE 0T9)

South Korea Alumni Chapter
JungKyun Alex You, Chair (MechE 0T1)
JaeYoung Choi (MechE 0T8)
Ryan Seh-Yoong Oh (IndE 0T4)
Kyoo Kim (MechE 1T0)
Peter (Pansoo) Kim (ElecE 0T3)
Yuroho Kim (EngSci 0T5)

Taiwan Campaign Committee
James C. Tai, Chair (ChemE 6T8)
Solomon Chang (IndE 9T7)
Caroline Chen (CompE 0T9)
Jeffrey Hsu (MechE 9T8)
Andrew Kuo (MechE 8T5)
Michael Lee (IndE 7T4)
Jack Liang (EngSci 0T5)
Jessica Liao (EngSci 0T3)

University of Toronto Alumni Association Board of Directors
Scott MacKendrick (ChemE 8T2)
Sara Dolcetti (IndE 0T9)

University of Toronto College of Engineers
Scott MacKendrick, Chair (ChemE 8T2)
Stan Gasneir (IndE 6T4)
Paul Malozewski (ElecE 8T3)
Mathew Szeto (CompE 0T4)

University of Toronto Governing Council
Claire Kennedy (ChemE 8T9)
Keith Thomas (MechE 8T7)

Governing Council Academic Board & Committee on Academic Policy & Programs
Sara Dolcetti (IndE 0T9)

Faculty Council Standing Committee on Community Affairs & Gender Issues
Linda Drisdelle (ChemE 8T5)

Faculty Council Standing Committee on Scholarships & Awards
Ewing Rae (MechE 5T8)

Faculty Council Standing Committee on Teaching Methods and Resources
Siamak Sarvari (EngSci MAeC 1T0)

"My engineering degree has been the foundation of my career. Contributing to the Faculty through the Boundless Campaign and volunteering through the EAA board are the most meaningful ways I can give back to ensure future generations of engineering students experience an equally rewarding education."

Teo Dechev (MinE 9T0)
CEO & President, Director, Mundorco Capital Inc.
Pictured here during a recent visit to a copper and gold mine in Bor, Serbia.
THE POWER OF COLLABORATION

When the talents, skills, expertise and knowledge of many are combined, the output is often more impressive than an individual effort. This is certainly the case within the Department of Chemical Engineering & Applied Chemistry.

For example, Professors Charles Mims (ChemE) and Doug Perovic (MMS 8T6, MASc 8T7, PhD 9T0) have teamed up to lead the Ontario Centre for Characterization of Advanced Materials (OCCAM). The centre is exploring new materials with positive qualities related to health, energy and environmental applications with the goal of stimulating Canada’s economic competitiveness.

Also looking to the strength of partnerships is Professor Greg Evans (ChemE 8T2, MASc 8T4, PhD 8T9) who runs the Southern Ontario Centre for Atmospheric Aerosol Research. He is working closely with Dr. Krystal Godri Politi (ChemE 0T5, MASc 0T8) and the Dalla Lana School of Public Health to launch an exposomic research program. Many chronic diseases are believed to stem from a combination of an individual’s genome and exposome, the measurement of an individual’s environment. This exposomic research program will help to position U of T as a leader in this emerging field.

In another intersection of engineering and health, Professors Milica Radicic (ChemE, IBMME) and Axel Guenther (MIE, IBMME) have been gaining recognition for their work on a 3-D skin printer. Last fall, their team created a technology that produces human skin quickly and efficiently. They hope to do the same with organs one day. This achievement was made possible through collaboration with MaRS Innovation and $660,000 of in-kind support from ten industrial partners.

Student success is central to their efforts. Students for BIOZONE BRANCHES OUT

PULP & PAPER CENTRE CELEBRATES 25 YEARS OF INDUSTRIAL PARTNERSHIPS

Professor Honghi Tran (ChemE PhD 8T2), the Centre’s director, has received a $1.86-million NSERC Collaborative Research Development Grant to fund a four-year research program that focuses on the impact of pulp and paper mill operations. Accompanying this grant was $1.4 million cash and $660,000 of in-kind support from ten industrial partners.

BIOZONE BRANCHES OUT

From its humble beginnings in 2010, BioZone is now home to nine principal investigators and includes 90 graduate students, post-doctoral fellows and research associates working together to provide viable solutions to urgent societal needs in energy, the environment and health. Its newly renovated and expanded space on the fourth floor of the Wolfberg Building officially opened in December 2012. The diverse research at BioZone includes bioremediation, biofuels and life cycle and policy analysis.

BIOZONE BRANCHES OUT

SMART LIGHTS

Think traffic in the world’s major cities is bad and getting worse? Confused about the myriad of transit solutions debated in the media? You are not alone. People around the world are struggling with the challenge of moving people and freight more efficiently, safely and economically.

The Department of Civil Engineering is working on innovative technologies that will help do just that, and surprisingly, they could look like your average traffic light. Meet MARLIN, a Multiple-Agent System Reinforcement Learning Integrated Network: in other words, a traffic light that learns adaptively.

Developed by Professor Baher Abdulhai, Director of Toronto Intelligent Transportations Systems (ITTS), MARLIN manages traffic congestion with artificial intelligence that adapts based on its experiences and the activity around it. Through feedback, MARLIN develops strategies for managing traffic flow. If congestion reduces due to its actions, then MARLIN knows it has done a good thing. If its decisions create an impasse, it knows not to use that tactic again.

MARLIN represents not just a singular traffic light, but rather a full network. By harnessing game theory concepts, the software allows traffic lights to communicate with one another and collectively ensure optimal and timely management of traffic conditions in order to avoid gridlock. On average, the system will reduce delay at intersections by 40 per cent, and in some areas, as much as 75 per cent. By alleviating congestion, MARLIN enhances automotive transportation while helping to reduce vehicle emissions by 30 per cent.

MARLIN is currently making the transition from U of T’s ITTS laboratory to the streets of the world. The software was recently licensed by PEEK, a U.S. traffic light manufacturer, and will soon be uploaded to the hardware on city streets, alleviating our congested traffic.

LASSONDE MINERAL ENGINEERING STUDENTS LAUNCH CIM STUDENT CHAPTER

Students in the Lassonde Mineral Engineering Program recently hosted an event to mark the creation of the Lassonde Mineral Engineering Program and industry thought leaders. It will also offer students more opportunity to network with industry professionals in both business and academic settings.

NEW MASTER OF ENGINEERING PROGRAM IN CITIES ENGINEERING AND MANAGEMENT

Cities are the economic engines of the world. With more than 50 per cent of the world’s population now living in cities, the health and wealth of nations depend strongly on how well cities function. The world needs more professionals with technical expertise and a fundamental understanding of the complex and cross-disciplinary issues facing cities.

To respond to that need, the Department of Civil Engineering has created a new opportunity within the Master of Engineering Program: the Master of Engineering in Cities Engineering and Management (MEngCEM). Visit uoft.me/mengcem for details.

Department of Chemical Engineering & Applied Chemistry

THE POWER OF COLLABORATION

When the talents, skills, expertise and knowledge of many are combined, the output is often more impressive than an individual effort. This is certainly the case within the Department of Chemical Engineering & Applied Chemistry.

For example, Professors Charles Mims (ChemE) and Doug Perovic (MMS 8T6, MASc 8T7, PhD 9T0) have teamed up to lead the Ontario Centre for Characterization of Advanced Materials (OCCAM). The centre is exploring new materials with positive qualities related to health, energy and environmental applications with the goal of stimulating Canada’s economic competitiveness.

Also looking to the strength of partnerships is Professor Greg Evans (ChemE 8T2, MASc 8T4, PhD 8T9) who runs the Southern Ontario Centre for Atmospheric Aerosol Research. He is working closely with Dr. Krystal Godri Politi (ChemE 0T5, MASc 0T8) and the Dalla Lana School of Public Health to launch an exposomic research program. Many chronic diseases are believed to stem from a combination of an individual’s genome and exposome, the measurement of an individual’s environment. This exposomic research program will help to position U of T as a leader in this emerging field.

In another intersection of engineering and health, Professors Milica Radicic (ChemE, IBMME) and Axel Guenther (MIE, IBMME) have been gaining recognition for their work on a 3-D skin printer. Last fall, their team created a technology that produces human skin quickly and efficiently. They hope to do the same with organs one day. This achievement was made possible through collaboration with MaRS Innovation and $660,000 of in-kind support from ten industrial partners.

Student success is central to their efforts. Students for

PULP & PAPER CENTRE CELEBRATES 25 YEARS OF INDUSTRIAL PARTNERSHIPS

Professor Honghi Tran (ChemE PhD 8T2), the Centre’s director, has received a $1.86-million NSERC Collaborative Research Development Grant to fund a four-year research program that focuses on the impact of pulp and paper mill operations. Accompanying this grant was $1.4 million cash and $660,000 of in-kind support from ten industrial partners.

BIOZONE BRANCHES OUT

From its humble beginnings in 2010, BioZone is now home to nine principal investigators and includes 90 graduate students, post-doctoral fellows and research associates working together to provide viable solutions to urgent societal needs in energy, the environment and health. Its newly renovated and expanded space on the fourth floor of the Wolfberg Building officially opened in December 2012. The diverse research at BioZone includes bioremediation, biofuels and life cycle and policy analysis.

SMART LIGHTS

Think traffic in the world’s major cities is bad and getting worse? Confused about the myriad of transit solutions debated in the media? You are not alone. People around the world are struggling with the challenge of moving people and freight more efficiently, safely and economically.

The Department of Civil Engineering is working on innovative technologies that will help do just that, and surprisingly, they could look like your average traffic light. Meet MARLIN, a Multiple-Agent System Reinforcement Learning Integrated Network: in other words, a traffic light that learns adaptively.

Developed by Professor Baher Abdulhai, Director of Toronto Intelligent Transportations Systems (ITTS), MARLIN manages traffic congestion with artificial intelligence that adapts based on its experiences and the activity around it. Through feedback, MARLIN develops strategies for managing traffic flow. If congestion reduces due to its actions, then MARLIN knows it has done a good thing. If its decisions create an impasse, it knows not to use that tactic again.

MARLIN represents not just a singular traffic light, but rather a full network. By harnessing game theory concepts, the software allows traffic lights to communicate with one another and collectively ensure optimal and timely management of traffic conditions in order to avoid gridlock. On average, the system will reduce delay at intersections by 40 per cent, and in some areas, as much as 75 per cent. By alleviating congestion, MARLIN enhances automotive transportation while helping to reduce vehicle emissions by 30 per cent.

MARLIN is currently making the transition from U of T’s ITTS laboratory to the streets of the world. The software was recently licensed by PEEK, a U.S. traffic light manufacturer, and will soon be uploaded to the hardware on city streets, alleviating our congested traffic.

LASSONDE MINERAL ENGINEERING STUDENTS LAUNCH CIM STUDENT CHAPTER

Students in the Lassonde Mineral Engineering Program recently hosted an event to mark the creation of the University of Toronto Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Student Chapter. The CIM Student Chapter will further enhance the strong connections between U of T’s Lassonde Mineral Engineering Program and industry thought leaders. It will also offer students more opportunity to network with industry professionals in both business and academic settings.

NEW MASTER OF ENGINEERING PROGRAM IN CITIES ENGINEERING AND MANAGEMENT

Cities are the economic engines of the world. With more than 50 per cent of the world’s population now living in cities, the health and wealth of nations depend strongly on how well cities function. The world needs more professionals with technical expertise and a fundamental understanding of the complex and cross-disciplinary issues facing cities.

To respond to that need, the Department of Civil Engineering has created a new opportunity within the Master of Engineering Program: the Master of Engineering in Cities Engineering and Management (MEngCEM). Visit uoft.me/mengcem for details.
WEARABLE AUTHENTICATION DEVICE
How many passwords and PINs do you keep locked in your head? The company is growing — they now have 10 employees, and are looking to hire more engineers and improve the lives of millions around the world by bringing their products to labs that are often difficult to reach," says Dou. Martin and Agrafioti have been grabbing international headlines with the release of their product Nymi, the world’s first wearable biometric authentication device. Nymi launched in September 2013 to much fanfare from The New York Times, Popular Science, TechCrunch, CNET, the U.K.’s Daily Mail and many others.

Martin and Agrafioti met as graduate students in ECE’s Communications Group. Agrafioti was working on designing algorithms for identifying people based on their electrocardiograms (ECGs) — technology that’s been incorporated into Nymi. Martin was working on security- and privacy-related technology. The two co-founded their company, Bionym, in 2011.

Nymi is a bracelet embedded with an ECG sensor that recognizes the unique and unchanging electronic signal of your heart. Once it has recognized you, Nymi communicates with all your registered devices to log you in, eliminating the need for passwords and PINs. It keeps you logged in until you remove the wristband.

To date, Bionym has received more than 5,000 pre-orders for Nymi, which begins shipping in early 2014. The company is growing — they now have 10 employees, all of whom graduated from U of T. The company is growing — they now have 10 employees, and are looking to hire more engineers and computer scientists.

“We are really affiliated with U of T, even today,” says Agrafioti. The team participated in the inaugural 2012–2013 cohort of U of T’s Creative Destruction Lab, and received support from MaRS Discovery District. The Innovations and Partnerships Office helped them file for patents and decide whether to license or incorporate. “I think we met the right people that have helped us shape Bionym into what it is today,” says Agrafioti.

ALUMNI BUSINESS DATA INTEGRATION SYSTEMS FINDING BROAD APPEAL
Since launching CoursePeer in September 2012, brothers Hadi Aladdini (CompE 1T2) and Marwan Aladdini (CompE 1T1) have forged partnerships worldwide with corporations, academic institutions and federal governments. They’ve just moved into new headquarters in Mississauga, opened 11 international locations, and launched 24/7 support for their products in multiple languages. CoursePeer integrates data across disparate areas of large businesses — its innovative Learning and Knowledge Management System, Social Collaboration Intranet and Intelligent Decision-Making Collaborative Network let executives monitor the whole institution in an accessible way.

INVESTORS BACK PORTABLE BLOOD TESTING DEVICE
ChipCare Corporation, a start-up company co-founded by ECE’s Professor Stewart Alitchson and PhD candidate James Dou secured one of the largest-ever angel investments in Canada’s healthcare sector. This $2-million investment will support ChipCare’s continuing development and commercialization of its unique handheld blood analyzer over the next three years. “This technology has the potential to save lives and improve the lives of millions around the world by bringing state-of-the-art blood testing to patients, instead of asking the sick to travel to labs that are often difficult to reach,” says Dou.

That was definitely the case for Ravindran, who attributes her selection to the Biomedical Engineering major to an inspiring ESEC lecture she attended by Professor Pamela Silver from Harvard Medical School.

Professors Silver and How are just two of many world-renowned speakers who make ESEC such an important event each year. And this year’s presenters are no exception. Of the eight scheduled speakers, four are EngSci alumni and three are former TedX presenters. This year’s speakers include:

— Dr. Todd Reichert (EngSci 0T5, AeroE PhD 1T1) and Cameron Robertson (EngSci 0T9, AeroE MASc 0T9) who made aeronautical history by winning the coveted Igor I. Sikorsky Human-Powered Helicopter Prize in June 2013.
— Ali Khademhosseini (ChemE 9T9, MASc 0T3, PhD 1T0), Associate Professor of Harvard Medical School and recipient of the Presidential Early Career Award for Scientists and Engineers.
— Dean of Engineering Science
The Institute of Biomaterials and Biomedical Engineering (IBBME) has long been a bastion for engineering ingenuity and entrepreneurial spirit. In the past decade of its 50-year history at the University of Toronto, IBBME faculty filed nearly 350 disclosures and patents. At last count there were 19 active companies operating among the Institute's faculty and students.

One of those companies is the brainchild of Professor Emeritus Richard S. Cobbold (ECE), cross-appointed faculty member Dr. Howard Ginsburg (Medicine) and third-year PhD student Amir Manbachi (EngSci OT8, BioMedE MASc 1T0). SpineSonics Medical, Inc. was founded by Professor Richard S. Cobbold (ECE) and Dr. Howard Ginsburg (Medicine). But it was while at a PhD candidate at IBBME that May founded his first company, Rimon Therapeutics Inc. with University Professor Michael Setton (ChemE '71).

Biomedical engineering graduates are likewise active. Michael May (ChemE '97, PhD '98) is Chief Executive Officer at the Centre for the Commercialization of Regenerative Medicine, just one of IBBME's technology transfer partners that brings regenerative medicine technologies into the marketplace.

Prof. Michael May (right) received $140,000 in 2022 from Medical, Inc. for technology transfer. IBBME students and faculty members joined engineering students from across the globe for a summer exchange program at Peking University in Beijing, China.

Broken Hearts in Business

Manbachi embodies the success of the program's emphasis on collaborative and multidisciplinary research — with a side dish of entrepreneurship. Students in the program draw one supervisor from the engineering discipline and one from health sciences, ensuring breadth of skills. MHSc candidates, meanwhile, complete internships with private companies as well as health agencies such as the World Health Organization. These students are able to rapidly turn real-world, applied experience into market-ready healthcare products.

Biomedical engineering graduates are likewise active. Michael May (ChemE '97, PhD '98) is Chief Executive Officer at the Centre for the Commercialization of Regenerative Medicine, just one of IBBME's technology transfer partners that brings regenerative medicine technologies into the marketplace.

Diagnostic Future Needs

Imagining microscopic substances designed to target and light up cancer or malaria DNA — and cell phone technology by which to read the results anywhere. This is the kind of forward-thinking technology dreamed up by Professor Warren Chan, whose company, CytoDiagnostics, has commenced licensing its diagnostic platform products for applications in medical devices for the developed and developing worlds.

Open Source Entrepreneurs

CellPure is the newly incorporated company from ‘broken hearts’ researcher Professor Milica Radisic and postdoctoral researcher Dario Bogujevic. The company will bring unique cell separation technology to the marketplace that will enable heart and tissue engineering researchers to overcome some of the major challenges related to the study of beating heart cells.

MIE Goes Global with Globex

Seven MIE undergraduates were part of an international group of students taking part in courses this summer at the College of Engineering at Peking University (PKU) in Beijing, China. Joining them to teach MIE courses were Professor Shaker A. Meguid (MIE) and Adjunct Professor Mike Munro (MIE).

The Global Educational Exchange — Globex — is an initiative for educational exchange and research collaboration between PKU and foreign schools of engineering. The Department of Mechanical & Industrial Engineering is the first Canadian partner.

For undergraduate Xiangyu Luo (MechE '16), the program was a way to get a jump-start on courses for the next academic year, while visiting home.

“I’ve been studying overseas since 2008, and have always wanted to return to Beijing for study. Peking University is the ‘dream school’ in China, so enrolling in Globex was the perfect opportunity.”

An accomplished researcher, Professor Meguid was the instructor of Luo’s Mechanics of Solids course. The course’s students traveled to PKU from universities in China, Hong Kong, Japan and Korea.

“As an academic, I see the benefits on two fronts,” said Professor Meguid. “First, we are showcasing the quality of our Canadian engineering education to the rest of the world. Second, these learning opportunities abroad develop lifelong friendships and experiences that ultimately shape our world for years to come.”

Further to the two courses offered by MIE, faculty from the University of Delaware, University of Pittsburgh and the Institute of Fluid Mechanics Toulouse, France, among others, were also teaching at PKU.

Increasing student and faculty participation, in addition to adding courses in Industrial Engineering, are goals of MIE’s participation in Globex in 2014 and beyond.

ON THE ROAD TO SAFER DRIVERS

Driver error contributes to more than 90 per cent of vehicle crashes. Operator feedback systems may help drivers improve their behind-the-wheel habits and make our roads safer. Professor Birsen Donmez (MIE), in partnership with Toyota’s Collaborative Safety Research Center, is investigating driver feedback systems. A newly acquired driving simulator facility enables the testing of drivers’ reactions as well as cognitive and physiological responses to various situations in a controlled environment.

Spotlight on Industry & Research

In addition to the weekly MIE Seminar Series featuring distinguished academicians, the department launched two new speaker series. The Industry Spotlight brings alumni back to campus to share insights with fourth-year capstone design students. Nick Di Donato (IndE '81), president & CEO of Liberty Entertainment Group, and Tom Halpenny (MechE '78), principal and senior manager at H. H. Angus, kicked off the series. The first Research Spotlight featured Professor Michael Carter (MIE), who shared insights on healthcare engineering research. To learn more, contact alumni@mie.utoronto.ca or 416-978-5450. For details on Winter 2014 Spotlights, visit utorf.mie.mie-events.

Department of Mechanical & Industrial Engineering

MIE students and faculty members joined engineering students from across the globe for a summer exchange program at Peking University in Beijing, China.
Department of Materials Science & Engineering

WALTER CURLOOK MATERIALS CHARACTERIZATION & PROCESSING LABORATORY OPENS

On September 5, 2013, the Walter Curlook Materials Characterization & Processing Laboratory was opened and unveiled to members of the Curlook family and the U of T Department of Materials Science & Engineering (MSE) community.

The lab, established with the support of a $1-million gift from alumnus Dr. Walter Curlook (MMSc 5T0, MSc 5T1, PhD 5T3), enables advanced materials characterization techniques such as X-ray diffraction (XRD) and X-ray fluorescence (XRF).

Housed in the Wallberg Building, the lab is split into two facilities for characterization and processing. The new equipment will benefit materials engineering research and teaching innovation at both the undergraduate and graduate levels across the entire department.

“This department, my alma mater, was the top institution in the world for metallurgical engineering research and teaching under the leadership of then Chair, Professor Lloyd Pidgeon,” said Dr. Curlook. “It is my hope that this gift will give us a boost to meet modern challenges and continue to keep our whole department on par with the rest of the best.”

“The establishment of the Walter Curlook Materials Characterization & Processing Laboratory helps us solidify our strengths in process and extractive metallurgy, which are critical areas in the continuing development of Canada’s natural resources economy,” said Professor Jun Nogami (EngSci 8T0), Dean Cristina Amon (MIE), Dr. Walter Curlook (MMSc 5T0, MSc 5T1, PhD 5T3) and Associate Professor Mansoor Barati (MSE) at the opening of the Walter Curlook Materials Characterization & Processing Laboratory.

NEW FACILITIES

On October 23 and 24, 2013, the Department of Materials Science & Engineering celebrated its centenary at the University of Toronto. Over 300 alumni, current students, faculty and staff gathered to celebrate this historic occasion.

This year’s Winegard Visiting Lectureship, held as part of the centennial events, featured Professor Michael F. Ashby of the University of Cambridge as the distinguished guest speaker. Professor Ashby gave two talks, one titled “What is Sustainable Technology? A Materials Perspective for Teaching Complexity in Engineering,” and a second public lecture titled “Why Should Engineering Students Care About Industrial Design?” Lectureship benefactor, the Honourable Dr. William Lloyd DeLaurier, explained, “The shape of the rotors, the twist of the blades and the structure that was just strong enough and light as can be all came about because of this high level of analytical refinement. These elements resulted in the stunning success of this aircraft.”

Professor and MSE Chair Jun Nogami (EngSci 8T0), Dean Cristina Amon (MIE), Dr. Walter Curlook (MMSc 5T0, MSc 5T1, PhD 5T3) and Associate Professor Mansoor Barati (MSE) at the opening of the Walter Curlook Materials Characterization & Processing Laboratory.
You can achieve your MEng in one, two or three years and tailor your study with specialized certificates. They include entrepreneurship and leadership, global engineering, energy studies, financial engineering, healthcare engineering, sustainable aviation and advanced water technologies. Or consider our new groundbreaking Master of Engineering in Cities Engineering & Management (MEngCEM), which includes an integrative practicum.

In addition to the MEng, we offer MASc, MHSc and PhD programs. Learn more at: gradstudies.engineering.utoronto.ca.

Back to Skule

Wondering if it’s time to come back to Skule to further your career? Meet Swati Shrivastava (MSE 0T8 + PEY), a Special Process Quality Engineer at Messier-Bugatti-Dowty who is complementing her day job with a part-time Master of Engineering (MEng) degree in the Department of Materials Science & Engineering. She is tailoring her study with an emphasis on Entrepreneurship, Leadership, Innovation & Technology in Engineering (ELITE).

Swati chose to pursue an MEng after four years of working in the mining and aerospace industries to further her academic and technical expertise — something she felt would help her excel in her current job and advance her career overall. While a career advantage played a big part in her decision to go back to school, Swati admits she also returned because of her passion for learning. "I've always loved school — from lectures and taking notes to making new friends," she says. "And U of T Engineering has a very distinct and positive environment. It's nice re-living those good-old school days as a graduate student."

Through her more technically focused courses, Swati is building upon her MSE undergraduate foundations in a way that links directly to her industry experience. She is also taking a wide range of entrepreneurship and leadership courses through the ELITE certificate. Courses like Project Management, Operations Research and New Product Innovation are giving her the tools to upgrade her business and managerial skills. "It’s a highly effective program that allows me to combine technical, management and business-related courses, giving me a broader perspective." She adds, "I find myself referencing my lecture notes constantly."

Juggling a full-time job with part-time study has been a challenge for Swati. "It takes a lot of dedication and determination, not to mention time management. But at the end of the day, this program is helping me learn and participate more efficiently in the technical, managerial and high-level dealings in my work environment."