



# Machine Learning for Medical Imaging

Department of Electrical and Computer Engineering
University of Toronto

Prof. Shahrokh Valaee

valaee@ece.utoronto.ca

## Wireless Internet Research Laboratory

- Director: Shahrokh Valaee
- Professors on Sabbatical: 13
- Visiting Researchers: 5, (LG Electronics, SONY, ETRI, Siradel)
- Post-doctoral Fellows: 9
- PhD Students: 18
- MASc Students: 20
- Visiting PhD Students: 12
- Visiting MSc Students: 3
- Undergrad students: > 60



Research Directions

- Machine learning for medical imaging
- 5G/6G wireless systems
- Localizations of WiFi and LTE terminals
- Vehicular communication



#### WIRLab's Collaboration with Two Hospitals to Solve Real-World Medical Problems











About St. Michael's Hospital:

- Downtown Toronto's adult trauma center Hub for neurosurgery, complex cardiac and cardiovascular care, diabetes and osteoporosis care
- •Well-known for ICU
- More than 10 Staff Radiologists, Clinical Scientists, and Surgeons Collaborating with our team

Real-world Clinical Problems

Massive Data Warehouse

**Clinical Consulting** 

**Environment to run POC** 

**WIRLab ECE University of Toronto** 

MIMLab.ca

University of

St. Michael's Hospital **Toronto** 

Model Design

**Machine Learning** 

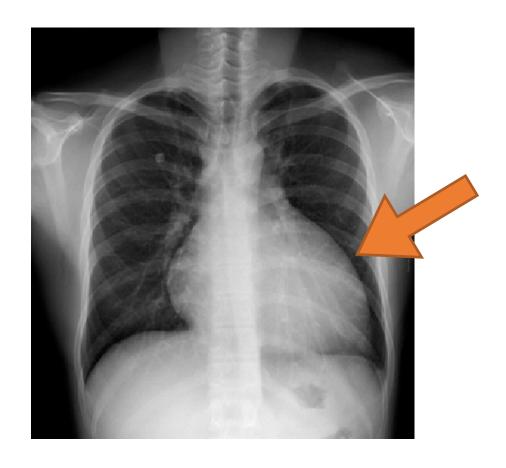
Signal Processing

**Implementation** 

What makes this team-up different:

- Daily exposure to clinical problems
- •Modeling open real-world clinical problems
- Providing tangible solutions
- Implementing algorithm
- Dynamic team Moving fast

## What is wrong with this image?



**Enlarged Heart (Cardiomegaly)** 



This is a normal case

## Some more Training Images

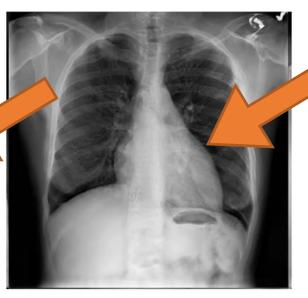
#### Cardiomegaly

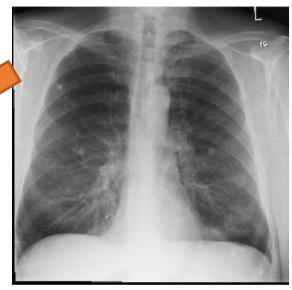


Normal

**Normal** 









https://lhncbc.nlm.nih.gov/system/files/pub9938.pdf

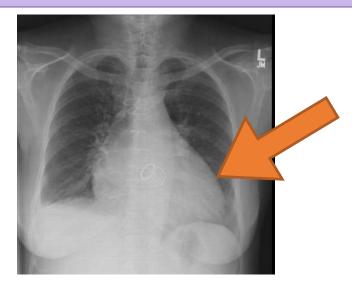
https://www.sciencedirect.com/topic s/neuroscience/cardiomegaly

## Find the Cardiomegaly X-Ray





We just trained your eyes





## Back to Training Images









https://lhncbc.nlm.nih.gov/system/files/pub9938.pdf

Real Image

Synthesized Image

Real Image

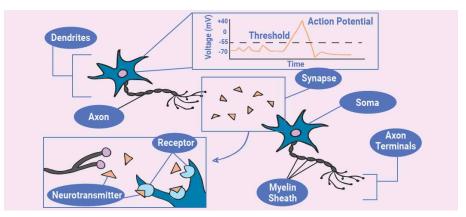
Synthesized Image

https://www.sciencedirect.com/topic s/neuroscience/cardiomegaly

#### How Does Brain Work?

- Neurons: 80-100 billion nerve cells
  - soma, axon, and dendrites
- **❖** Each neuron is connected to more than 1,000 other neurons
- **❖** A neuron has a negative charge of -70 mV
- Once the neuron reaches a threshold of -55mV, the neuron to "fire" Electrical signals are converted into chemical signals that travel between neurons

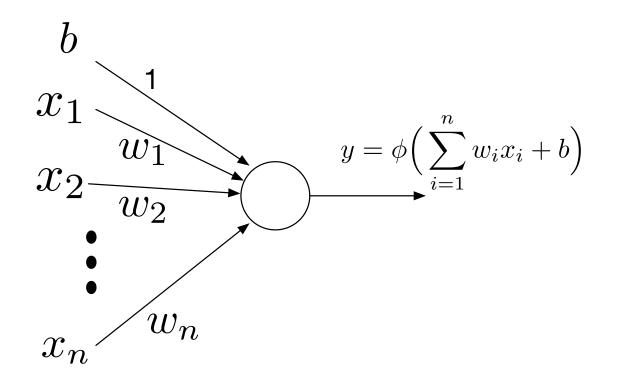


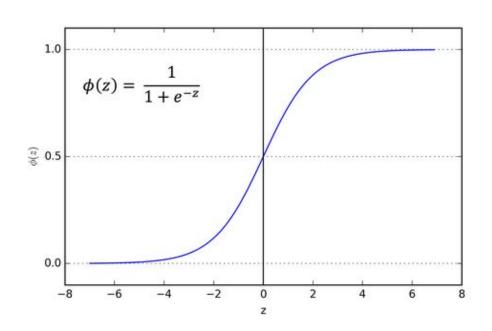


https://www.dana.org/article/how-does-the-brain-work/

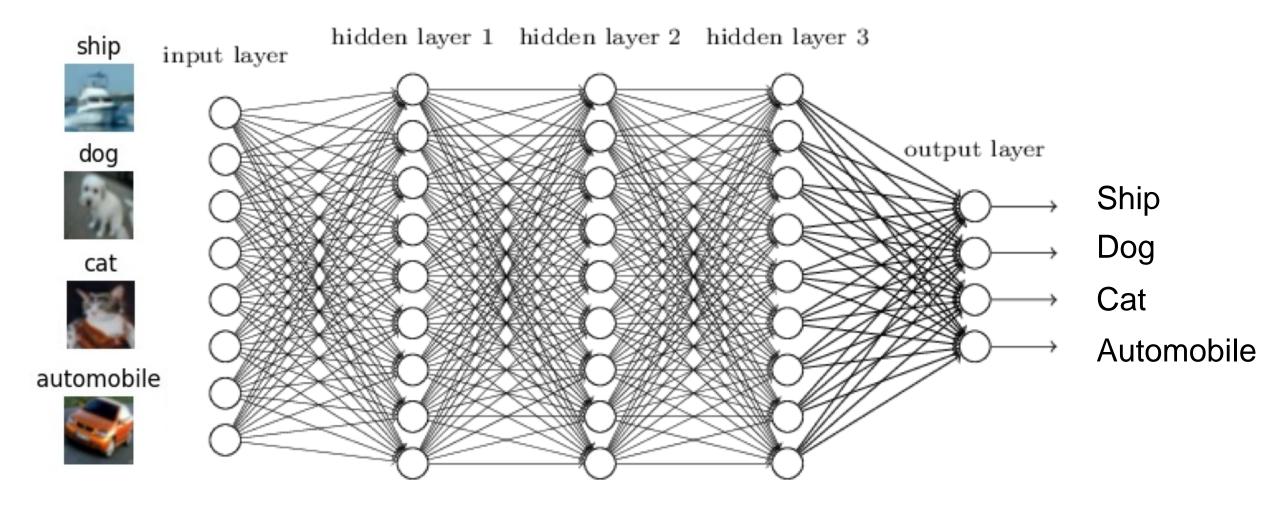
## How can we train machines to diagnose?

• First we need to build a (machine) neuron

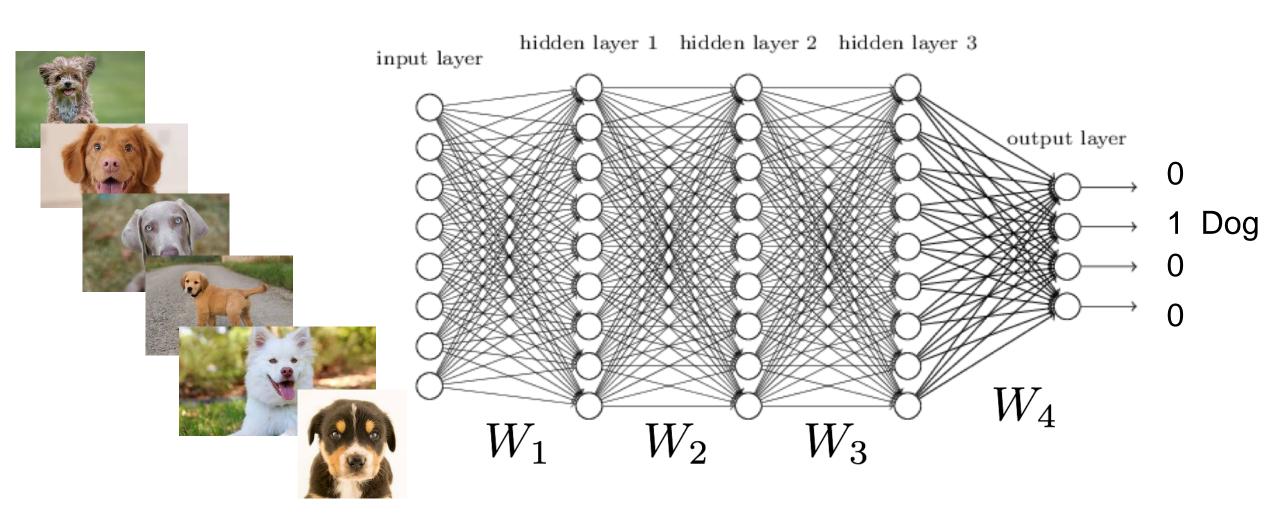




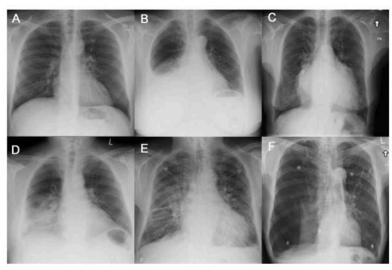
### **Network of Neurons**



## **Training Neural Networks**



#### Classification of Chest Pathology

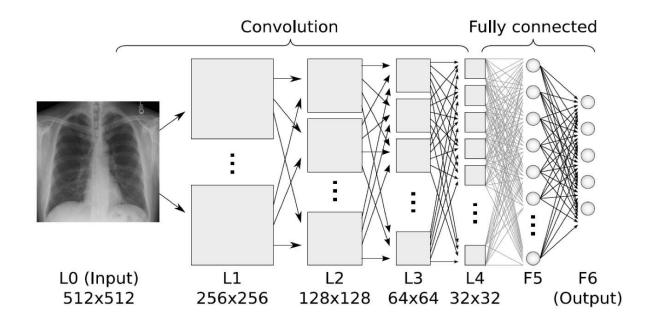


- A Normal
- B Effusion
- C Cardiomegaly
- D Consolidation
- E Edema
- F Pneumothorax

About 20,000 Real

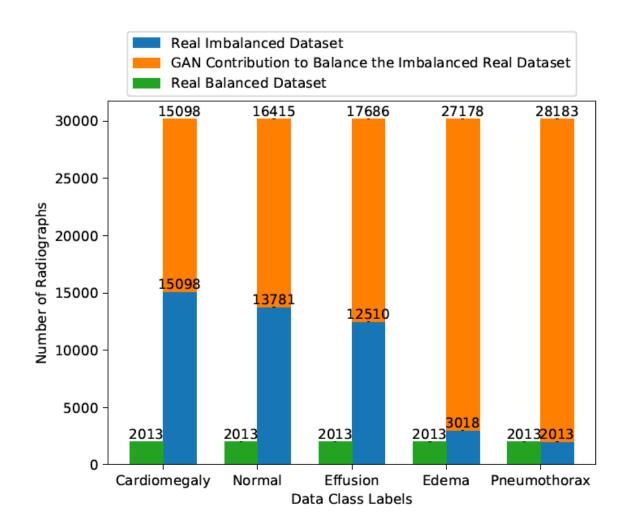
Radiographs

# Applying Deep Convolutional Networks to Chest X-rays



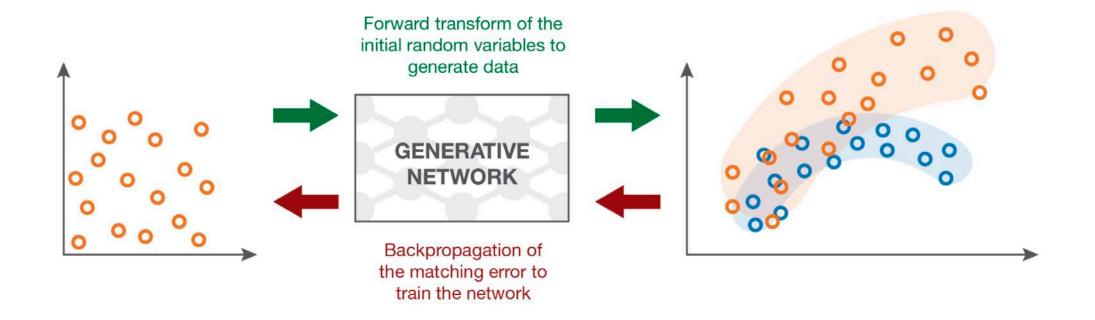
#### Unbalanced Labeled Data

- Data is mostly unbalanced in practice
  - More Cardiomegaly cases than Pneumothorax
- Several options:
  - Use all the available data (blue)
  - Use the same number of data samples for each class (green)
  - Synthesize data (blue + orange)



# Generative Adversarial Networks (GAN)

#### **Generative Networks**



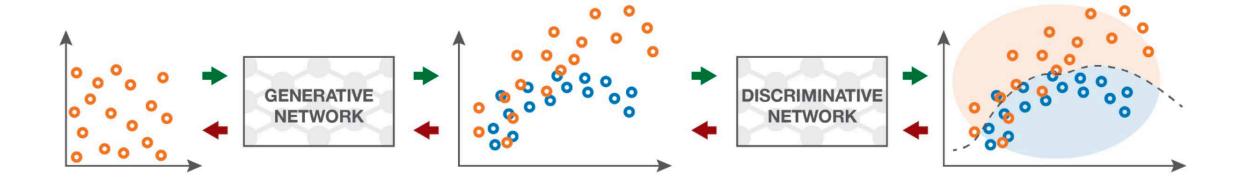
Input random variables (drawn from a uniform).

Generative network to be trained.

The generated distribution is compared to the true distribution and the "matching error" is backpropagated to train the network.

https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

## Generative Adversarial Networks (GAN)



Input random variables.

The generative network is trained to **maximise** the final classification error.

The generated distribution and the true distribution are not compared directly.

The discriminative network is trained to **minimise** the final classification error.

The classification error is the basis metric for the training of both networks.

https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

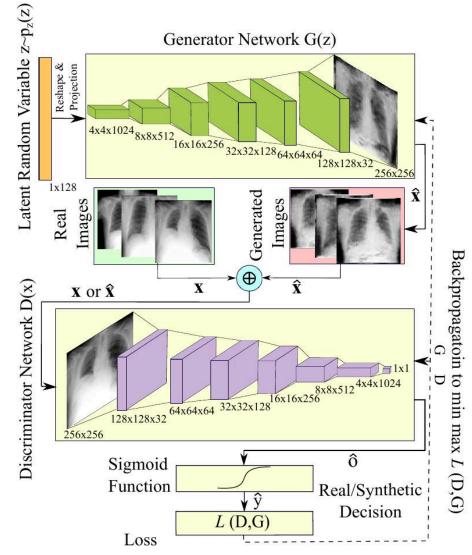
## Who are these celebrities?



https://arxiv.org/pdf/1710.10196.pdf

## Synthesizing Chest X-Rays

- Generative Adversarial Networks are composed of two parts
  - Generator Network
  - Discriminator Network
- Generator <u>synthesizes</u> Chest X-rays
- Discriminator <u>classifies</u> inputs images as real or synthesized images
- When Discriminator cannot classify properly, the Generator has been fully trained (<u>Generator can fool the</u> <u>Discriminator</u>)



## Using Synthesized Images for Training

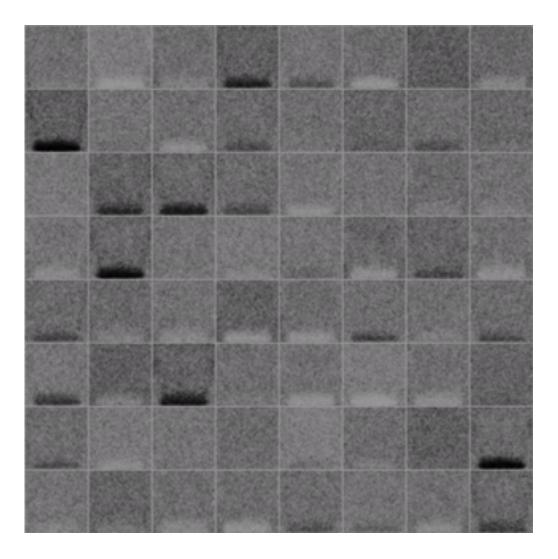
 Synthesized images by the Generator can be used to <u>train</u> another deep neural network

• The trained deep neural network is then used to classify real images

Classifie



#### Generate Chest Radiographs with Generative Adversarial Networks (GAN)





(a) Edema-R



(e) Normal-R



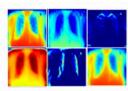
(i) Pneumothorax-R



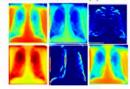
(m) Cardiomegaly-R



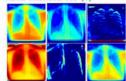
(q) Effusion-R



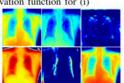
(b) Features after first layer activation function for (a)



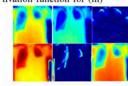
(f) Features after first layer activation function for (e)



(j) Features after first layer activation function for (i)



(n) Features after first layer activation function for (m)



(r) Features after first layer activation function for (q)



(c) Edema-S



(g) Normal-S



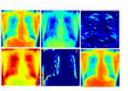
(k) Pneumothorax-S



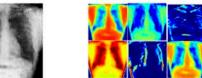
(o) Cardiomegaly-S



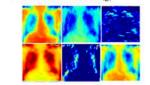
(s) Effusion-S



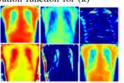
(d) Features after first layer activation function for (c)



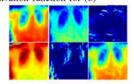
(h) Features after first layer activation function for (g)



(1) Features after first layer activation function for (k)

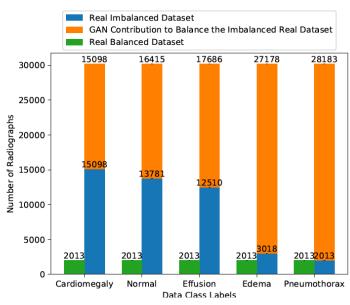


(p) Features after first layer activation function for (o)



(t) Features after first layer activation function for (s)

## Chest Pathology with Generated Radiographs





• DS2: Real + Synthesized dataset

DS3: Real balanced dataset

|             | 100 - |                                                                                   |
|-------------|-------|-----------------------------------------------------------------------------------|
| Accuracy(%) | 90 -  |                                                                                   |
|             | 80 -  |                                                                                   |
|             | 70 -  |                                                                                   |
|             | 60 -  |                                                                                   |
|             | 50 -  |                                                                                   |
|             | 40 -  |                                                                                   |
|             | 30 -  |                                                                                   |
|             | 20 -  | Real Imbalanced Dataset                                                           |
|             | 10 -  | GAN Contribution to Balance the Imbalanced Real Dataset     Real Balanced Dataset |
|             | 0 -   |                                                                                   |
|             | (     | ) 20 40 60 80 100<br>Iteration                                                    |

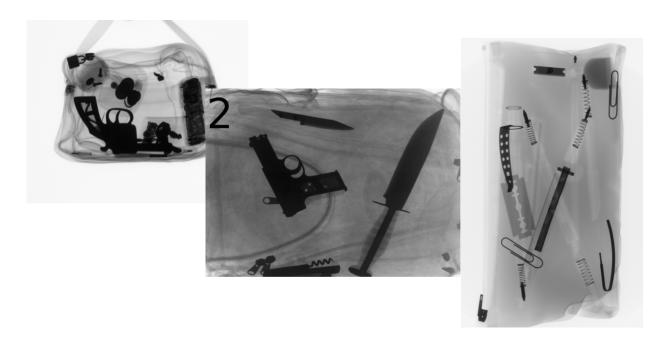
| Model                                   | Dataset | Per-Class Accuracy (%) |        |          |       |              | Accuracy (%)     |
|-----------------------------------------|---------|------------------------|--------|----------|-------|--------------|------------------|
| Wiodei                                  |         | Cardiomegaly           | Normal | Effusion | Edema | Pneumothorax | Accuracy (10)    |
|                                         | DS1     | 79.15                  | 77.75  | 73.64    | 65.86 | 57.99        | $70.87 \pm 0.47$ |
| AlexNet                                 | DS2     | 95.31                  | 95.02  | 91.19    | 89.68 | 88.84        | $92.10\pm0.41$   |
|                                         | DS3     | 71.73                  | 72.53  | 51.23    | 50.12 | 48.92        | $58.90 \pm 0.48$ |
|                                         | DS1     | 80.64                  | 59.57  | 74.07    | 68.93 | 59.57        | $71.72 \pm 0.62$ |
| GoogLeNet                               | DS2     | 96.64                  | 89.39  | 94.75    | 90.62 | 89.39        | $93.35 \pm 0.52$ |
| 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | DS3     | 75.49                  | 48.19  | 53.00    | 44.65 | 48.19        | $59.72 \pm 0.84$ |

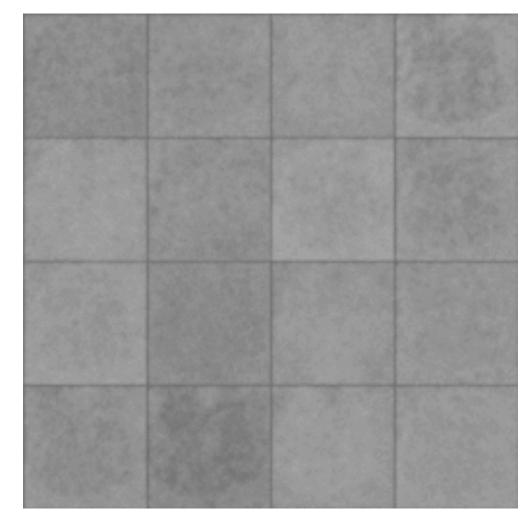
## **Privacy Preserving**

- Hospitals are bound by privacy of patients
- X-rays cannot be easily moved to outside hospital servers
  - There exist strict codes on how data can be utilized for research purposes
- Synthesized images do not belong to any human being
- Synthesized images can be easily ported without privacy concerns

## Luggage Screening

- Anomalous data for screening application is limited.
- We can generate data using adversarial networks





## Summary

- Machine Learning can help physicians to better diagnose diseases
  - Cannot replace physicians yet
- Neural Networks are a class of machine learning methods that show very high accuracy
- Deep Neural Networks need a large number of data samples for training
- > In the absence of data, generative adversarial networks can synthesize data that can then be for training deep neural networks
- Application of synthesized data for network training results in a very high classification accuracy